Pharmacogenomics, often abbreviated "PGx," is the study of the role of the genome in drug response. Its name ( + genomics) reflects its combining of pharmacology and genomics. Pharmacogenomics analyzes how the genetic makeup of a patient affects their response to drugs.
Pharmacogenomics aims to develop rational means to optimize pharmacotherapy, with regard to the patients' genotype, to achieve maximum efficiency with minimal adverse effects. It is hoped that by using pharmacogenomics, pharmaceutical drug treatments can deviate from what is dubbed as the "one-dose-fits-all" approach. Pharmacogenomics also attempts to eliminate trial-and-error in prescribing, allowing physicians to take into consideration their patient's genes, the functionality of these genes, and how this may affect the effectiveness of the patient's current or future treatments (and where applicable, provide an explanation for the failure of past treatments). Such approaches promise the advent of precision medicine and even personalized medicine, in which drugs and drug combinations are optimized for narrow subsets of patients or even for each individual's unique genetic makeup.
Whether used to explain a patient's response (or lack of it) to a treatment, or to act as a predictive tool, it hopes to achieve better treatment outcomes and greater efficacy, and reduce drug toxicities and adverse drug reactions (ADRs). For patients who do not respond to a treatment, alternative therapies can be prescribed that would best suit their requirements. In order to provide pharmacogenomic recommendations for a given drug, two possible types of input can be used: genotyping, or exome or whole genome sequencing. Sequencing provides many more data points, including detection of mutations that prematurely terminate the synthesized protein (early stop codon).
Germline mutations in drug targets can also influence response to medications, though this is an emerging subfield within pharmacogenomics. One well-established gene-drug interaction involving a germline mutation to a drug target is warfarin (Coumadin) and VKORC1, which codes for vitamin K epoxide reductase (VKOR). Warfarin binds to and inhibits VKOR, which is an important enzyme in the vitamin K cycle. Inhibition of VKOR prevents Redox of vitamin K, which is a cofactor required in the formation of coagulation factors Thrombin, VII, Factor IX and Factor X, and inhibitors protein C and Protein S.
The CPIC guidelines are "designed to help clinicians understand HOW available genetic test results should be used to optimize drug therapy, rather than WHETHER tests should be ordered. A key assumption underlying the CPIC guidelines is that clinical high-throughput and pre-emptive (pre-prescription) genotyping will become more widespread, and that clinicians will be faced with having patients’ genotypes available even if they have not explicitly ordered a test with a specific drug in mind. CPIC's guidelines, processes and projects have been endorsed by several professional societies."
"The information in this Table is intended primarily for prescribers, and patients should not adjust their medications without consulting their prescriber. This version of the table is limited to pharmacogenetic associations that are related to drug metabolizing enzyme gene variants, drug transporter gene variants, and gene variants that have been related to a predisposition for certain adverse events. The FDA recognizes that various other pharmacogenetic associations exist that are not listed here, and this table will be updated periodically with additional pharmacogenetic associations supported by sufficient scientific evidence."
In cancer treatment, pharmacogenomics tests are used to identify which patients are most likely to respond to certain cancer drugs. In behavioral health, pharmacogenomic tests provide tools for physicians and care givers to better manage medication selection and side effect amelioration. Pharmacogenomics is also known as companion diagnostics, meaning tests being bundled with drugs. Examples include KRAS test with cetuximab and EGFR test with gefitinib. Beside efficacy, germline pharmacogenetics can help to identify patients likely to undergo severe toxicities when given cytotoxics showing impaired detoxification in relation with genetic polymorphism, such as canonical 5-FU. In particular, genetic deregulations affecting genes coding for DPD, UGT1A1, TPMT, CDA and CYP2D6 are now considered as critical issues for patients treated with 5-FU/capecitabine, irinotecan, mercaptopurine/azathioprine, gemcitabine/capecitabine/AraC and tamoxifen, respectively.
In cardiovascular disorders, the main concern is response to drugs including warfarin, clopidogrel, , and . In patients with CYP2C19, who take clopidogrel, cardiovascular risk is elevated, leading to medication package insert updates by regulators. In patients with type 2 diabetes, haptoglobin (Hp) genotyping shows an effect on cardiovascular disease, with Hp2-2 at higher risk and supplemental vitamin E reducing risk by affecting HDL.
In psychiatry, as of 2010, research has focused particularly on 5-HTTLPR and DRD2.
In 2010, Vanderbilt University Medical Center launched Pharmacogenomic Resource for Enhanced Decisions in Care and Treatment (PREDICT); in 2015 survey, two-thirds of the clinicians had ordered a pharmacogenetic test.
In 2019, the largest private health insurer, UnitedHealthcare, announced that it would pay for genetic testing to predict response to psychiatric drugs.
In 2020, Canada 4th largest health and dental insurer, Green Shield Canada, announced that it would pay for pharmacogenetic testing and its associated clinical decision support software to optimize and personalize mental health prescriptions.
The need for pharmacogenomically tailored drug therapies may be most evident in a survey conducted by the Slone Epidemiology Center at Boston University from February 1998 to April 2007. The study elucidated that an average of 82% of adults in the United States are taking at least one medication (prescription or nonprescription drug, vitamin/mineral, herbal/natural supplement), and 29% are taking five or more. The study suggested that those aged 65 years or older continue to be the biggest consumers of medications, with 17–19% in this age group taking at least ten medications in a given week. Polypharmacy has also shown to have increased since 2000 from 23% to 29%.
Patient A has schizophrenia. Their treatment included a combination of ziprasidone, olanzapine, trazodone and benzatropine. The patient experienced dizziness and sedation, so they were tapered off ziprasidone and olanzapine, and transitioned to quetiapine. Trazodone was discontinued. The patient then experienced excessive sweating, tachycardia and neck pain, gained considerable weight and had hallucinations. Five months later, quetiapine was tapered and discontinued, with ziprasidone re-introduced into their treatment, due to the excessive weight gain. Although the patient lost the excessive weight they had gained, they then developed muscle stiffness, cogwheeling, tremors and night sweats. When benztropine was added they experienced blurry vision. After an additional five months, the patient was switched from ziprasidone to aripiprazole. Over the course of 8 months, patient A gradually experienced more weight gain and sedation, and developed difficulty with their gait, stiffness, cogwheeling and dyskinetic ocular movements. A pharmacogenomics test later proved the patient had a CYP2D6 *1/*41, which has a predicted phenotype of IM and CYP2C19 *1/*2 with a predicted phenotype of IM as well.
Patient B is a woman who gave birth by caesarian section. Her physician prescribed codeine for post-caesarian pain. She took the standard prescribed dose, but she experienced nausea and dizziness while she was taking codeine. She also noticed that her breastfed infant was lethargic and feeding poorly. When the patient mentioned these symptoms to her physician, they recommended that she discontinue codeine use. Within a few days, both the patient's and her infant's symptoms were no longer present. It is assumed that if the patient had undergone a pharmacogenomic test, it would have revealed she may have had a duplication of the gene CYP2D6, placing her in the Ultra-rapid metabolizer (UM) category, explaining her reactions to codeine use.
Case C – FDA Warning on Codeine Overdose for Infants
On February 20, 2013, the FDA released a statement addressing a serious concern regarding the connection between children who are known as CYP2D6 UM, and fatal reactions to codeine following tonsillectomy and/or adenoidectomy (surgery to remove the tonsils and/or adenoids). They released their strongest Boxed Warning to elucidate the dangers of CYP2D6 UMs consuming codeine. Codeine is converted to morphine by CYP2D6, and those who have UM phenotypes are in danger of producing large amounts of morphine due to the increased function of the gene. The morphine can elevate to life-threatening or fatal amounts, as became evident with the death of three children in August 2012.
Issues surrounding the availability of the test include:
Although other factors contribute to the slow progression of pharmacogenomics (such as developing guidelines for clinical use), the above factors appear to be the most prevalent. Increasingly substantial evidence and industry body guidelines for clinical use of pharmacogenetics have made it a population wide approach to precision medicine. Cost, reimbursement, education, and easy use at the point of care remain significant barriers to widescale adoption.
More recently it has been argued that genetic exceptionalism is past its expiration date as we move into a blended genomic/big data era of medicine, yet exceptionalism practices continue to permeate clinical healthcare today. Garrison et al. recently relayed a call to action to update verbiage from genetic exceptionalism to genomic contextualism in that we recognize a fundamental duality of genetic information. This allows room in the argument for different types of genetic information to be handled differently while acknowledging that genomic information is similar and yet distinct from other health-related information. Genomic contextualism would allow for a case-by-case analysis of the technology and the context of its use (e.g., clinical practice, research, secondary findings).
Others argue that genetic information is indeed distinct from other health-related information but not to the extent of requiring legal/regulatory protections, similar to other sensitive health-related data such as HIV status. Additionally, Evans et al. argue that the EHR has sufficient privacy standards to hold other sensitive information such as social security numbers and that the fundamental nature of an EHR is to house highly personal information. Similarly, a systematic review reported that the public had concern over privacy of genetic information, with 60% agreeing that maintaining privacy was not possible; however, 96% agreed that a direct-to-consumer testing company had protected their privacy, with 74% saying their information would be similarly or better protected in an EHR. With increasing technological capabilities in EHRs, it is possible to mask or hide genetic data from subsets of providers and there is not consensus on how, when, or from whom genetic information should be masked. Rigorous protection and masking of genetic information is argued to impede further scientific progress and clinical translation into routine clinical practices.
The first FDA approval of a pharmacogenetic test was in 2005 (for in CYP2D6 and CYP2C19)
As the cost per genetic test decreases, the development of personalized drug therapies will increase. Technology now allows for genetic analysis of hundreds of target genes involved in medication metabolism and response in less than 24 hours for under $1,000. This a huge step towards bringing pharmacogenetic technology into everyday medical decisions. Likewise, companies like deCODE genetics, MD Labs Pharmacogenetics, Navigenics and 23andMe offer genome scans. The companies use the same genotyping chips that are used in GWAS studies and provide customers with a write-up of individual risk for various traits and diseases and testing for 500,000 known SNPs. Costs range from $995 to $2500 and include updates with new data from studies as they become available. The more expensive packages even included a telephone session with a genetics counselor to discuss the results.
Pharmacogenetics vs. pharmacogenomics
Mechanisms of pharmacogenetic interactions
Pharmacokinetics
Drug-metabolizing enzymes
Drug transporters
Pharmacodynamics
Drug targets
Off-target sites
Immunologic
Clinical pharmacogenomics resources
Clinical Pharmacogenetics Implementation Consortium (CPIC)
U.S. Food and Drug Administration
Table of Pharmacogenetic Associations
Table of Pharmacogenomic Biomarkers in Drug Labeling
PharmGKB
Commercial Pharmacogenetic Testing Laboratories
Direct-to-Consumer Pharmacogenetic Testing
Common Pharmacogenomic-Specific Nomenclature
Genotype
Phenotype
Applications
Pharmacogenomics may be applied to several areas of medicine, including pain management, cardiology, oncology, and psychiatry. A place may also exist in forensic pathology, in which pharmacogenomics can be used to determine the cause of death in drug-related deaths where no findings emerge using autopsy.
Clinical implementation
Reduction of polypharmacy
Example case studies
Challenges
Controversies
Race-based medicine
Genetic exceptionalism
History
Future
Ethics
Web-based resources
+Web Resources for Pharmacogenomics Pharmacogenomics Research Network (PGRN) The PGRN hosts resources and information to stimulate collaborative research in pharmacogenomics and precision medicine.
See also
Further reading
External links
|
|